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We investigate the return-volatility correlation both local and nonlocal in time with daily and minutely data
of the German DAX and Chinese indices, and observe a leverage effect for the German DAX, while an
antileverage effect for the Chinese indices. In the negative time direction, i.e., for the volatility-return corre-
lation, an antileverage effect nonlocal in time is detected for both the German DAX and Chinese indices,
although the duplicate local in time does not exist. A retarded volatility model may describe the asymmetric
properties of the financial indices in the positive time direction.

DOI: 10.1103/PhysRevE.73.065103 PACS number�s�: 89.65.�s, 89.75.�k

In recent years, the application of physical concepts and
methods to economic and social science has attracted much
attention of physicists. Based on large amounts of historical
data, the dynamic behavior of financial indices or stock
prices, etc. has been quantitatively analyzed �1–5�. Different
models and theoretical approaches have been developed to
describe the features of the financial dynamics �6–17�.

The dynamics of a complex system is often characterized
by dynamic fluctuations and time correlations. For the finan-
cial system, let us denote a financial index and the return of
the index as y�t�� and r�t��=ln y�t�+1�−ln y�t��, respec-
tively. Recent quantitative analyses show that the autocorre-
lation function of the volatility �r�t��� decays by a power law,
i.e., with a very long correlating time �2,3�. This explains
large fluctuations of the volatilities �1–3,5�. On the other
hand, the autocorrelation function of the returns decays ex-
ponentially with a negligibly small correlating time �2,3�,
and the movement of r�t�� can not be naively predicted from
its history.

In order to further understand the dynamic evolution of
r�t��, one then considers the return-volatility correlation
function

L�t� = ��r�t���r�t� + t��2� − �r�t�����r�t���2��/Z, Z = ��r�t���2�2,

�1�

which quantifies the asymmetric volatility �18–20�. Here
�¯� is an average over t�. In a recent work �4�, L�t� is com-
puted with the daily data of several mature financial markets,
and a negative L�t�, i.e., the so-called leverage effect, is ob-
served up to weeks. The leverage effect indicates that a nega-
tive r�t�� induces a higher volatility, while a positive r�t��
may lead to stable stock prices �4,18–21�. In the negative
time direction, i.e., for the volatility-return correlation, L�t�
fluctuates around zero �4�.

Up to date, dynamic properties local in time are mainly
concerned. The features of the financial dynamics are rather
robust, and usually independent of specific markets. The mo-
tivation of this paper is twofold. On the one hand, the Chi-
nese stock market is newly set up in 1990. Due to different
social and economic systems in China, it is important to
study the dynamic behavior of the Chinese market and to
broaden our understanding of the financial dynamics. On the

other hand, the dynamic behavior nonlocal in time is much
attended in the real markets. For example, one tells that the
market has been continuously unstable for a few weeks, etc.
An investigation of the dynamic behavior nonlocal in time
gains new insights into the dynamic mechanism in financial
markets.

In this Rapid Communication, we study the return-
volatility correlation both local and nonlocal in time for the
German and Chinese markets. For a comparative study, we
have collected the daily data of the German DAX from 1959
to 1999 and the minutely data from 1993 to 1997, and the
daily data of the Shanghai Index and Shenzhen Index from
1990 or 1991 to 2003, and the minutely data from 1999 to
2003. The minutely data are recorded every minute in the
German DAX, while every 5 min in Chinese indices. A
working day is about 400 min in Germany while 240 min in
China �22�.

In Fig. 1�a�, −L�t� computed with the daily data is plotted.
In the positive time direction, we observe a negative L�t�,
i.e., a leverage effect, for the German DAX, while a positive
L�t� for both the Shanghai Index and Shenzhen Index. We
name a positive return-volatility correlation “an antileverage
effect.” Fitting the data to an exponential form L�t�
=c exp�−t /��, one obtains �=15 and 7 days days for the le-
verage and antileverage effects, respectively. Compared with
the small correlating time �a few minutes� of the returns
�2,3�, both the leverage and antileverage effects are rather
prominent. Here the leverage hypothesis �23,24�, which as-
sumes a negative return-volatility correlation, fails in the
Chinese market. In the negative time direction, L�t� fluctu-
ates around zero for both the German and Chinese markets.
This implies that r�t�� is not or very weakly correlated to
volatilities in the past times. In this sense, the volatility feed-
back theory �25,26�, which assumes a negative volatility-
return correlation, does not straightforwardly apply to both
the German and Chinese markets �4�. For L�t�, the financial
dynamics is irreversible in time.

Usually, the leverage effect is considered to be a phenom-
enon at the daily time scale, and therefore only computed
with the daily data �4�. To further confirm our findings, how-
ever, we analyze also the minutely data. Our minutely data of
both the German DAX and Chinese indices are taken only
for a few years. If the findings from the daily data may be
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also observed with the minutely data, we can safely conclude
that the leverage and antileverage effects are indeed the fea-
tures of the German DAX and Chinese indices, respectively.
Obviously, as shown in the island of Fig. 1�b�, L�t� computed
with the minutely data contains high-frequency fluctuations.
To reveal the dynamic behavior of the slow mode, we aver-
age the data points in time windows of 4 days. Then the
leverage and antileverage effects emerge, well consistent
with those of the daily data. Since the dynamic behaviors of
the Shanghai index and Shenzhen index look essentially the
same, an average over two indices has been taken in Fig.
1�b�.

Why do the German and Chinese markets exhibit differ-
ent return-volatility correlations? Germany is a developed
country. To some extent, people show risk aversion, and
therefore, may be nervous in trading as the stock price is
falling. This induces a higher volatility. When the price is
rising, people feel safe and are inactive in trading. Thus, the

stock price tends to be stable. This should be the social origin
of the leverage effect. However, China just experiences the
first stage of capitalism, and people are somewhat excessive
speculative in the financial markets. Therefore, people rush
for trading as the stock price increases. When the price
drops, people stay inactive in trading and wait for rising up
of the stock price. That explains the antileverage effect.

The correlation function L�t� is an observable local in
time, and the results in the negative time direction in Fig.
1�a� suggest that the volatility at a fixed time does not control
the rising or falling of the price in the future. In the real
markets, however, the dynamic behavior nonlocal in time
can be important. Therefore, exploring the dynamic behavior
nonlocal in time will deepen the understanding of the finan-
cial dynamics. Following this thought, we introduce a dy-
namic observable nonlocal in time to describe the return-
volatility correlation.

For r�t���0 �or �0�, we define P�t , + � �or P�t ,−�� as the
probability that the volatility has been always below �r�t��� in
a time t, i.e., �r�t�+s��� �r�t��� for all s� t. In practical com-
putations, an average is taken over t�. P�t , ± � describe time
correlations of the volatilities nonlocal in time, and similar
dynamic behavior has been well studied in critical dynamics
and turbulence �27–32�. For the returns r�t���0 and r�t��
�0, respectively, the probability distributions P�t , + � and
P�t ,−� measure how long the price would continuously re-
main stable. The difference between P�t , + � and P�t ,−� in-
dicates the effect of the return r�t�� on this time correlation
of the volatilities nonlocal in time. Therefore, we define a
return-volatility correlation function nonlocal in time,

NL�t� = �P�t,− � − P�t, + ��/Z, Z = �P�1,− � − P�1, + �� .
�2�

A negative NL�t� indicates that �r�t�+ t�� tends to be stable if
r�t���0, while fluctuates more if r�t���0. This is a leverage
effect. Similarly, a positive NL�t� represents an antileverage
effect. In Fig. 2�a�, −NL�t� is displayed. For the daily data, a
leverage effect is clearly observed for the German DAX,
while an antileverage effect for the Chinese indices. This is
similar to the finding from L�t�. But NL�t� of the German
DAX now shows a power-law behavior rather than an expo-
nential one, and remains nonzero within months. Fitting the
data to the form

NL�t� = c/�t + a��, �3�

one obtains an exponent �=0.91�5�. NL�t� of the Chinese
indices is a little fluctuating, but the antileverage effect can
be identified up to two weeks. For the minutely data, both the
German and Chinese markets exhibit a leverage effect. The
antileverage effect nonlocal in time for the Chinese market is
a phenomenon purely in a daily time scale. In Fig. 2�a�, all
the curves of NL�t� could be fitted to the power law in Eq.
�3�.

To reveal the dynamic effect of the volatilities on the
returns, we compute NL�−t� along the negative time direc-
tion. Surprisingly, one finds an antileverage effect for both
the German and Chinese markets in Fig. 2�b�. NL�−t� of the

FIG. 1. �Color online� �a� −L�t� computed with daily data.
Dashed lines show an exponential fit L�t�=c exp�−t /�� with �c ,��
= �−27,15� and �15,7� for the leverage and antileverage effects, re-
spectively. �b� −L�t� computed with both daily and minutely data.
The curves of the Chinese indices are from an average over the
Shanghai index and Shenzhen index. Dashed lines are for guiding
the eyes and with an exponential form L�t�=c exp�−t /�� with
�c ,��= �−33,13� and �21,10� for the leverage and antileverage ef-
fects, respectively.
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daily data of the German DAX exhibits a power-law behav-
ior up to months, and the fitted exponent �=0.88�4�. In fact,
the curves of both the German DAX and Chinese indices
obey the power law in Eq. �3� with a same exponent �,
although the exponent � takes different values for the daily
and minutely data. For comparison, we also plot −NL�t� of
the German DAX in Fig. 2�b�. For NL�t�, the German DAX
is reversible in time, while the Chinese indices are not.

Compared with L�t�, NL�t� describes time correlations
nonlocal in time, and is clearly nonzero in the negative time
direction. This is significant. The antileverage effect in the

negative time direction indicates that after the volatility
�r�t��� is continuously stable for a period of time, the price
drops; otherwise, the price rises. In this sense, the dynamic
behavior nonlocal in time also does not follow the volatility
feedback assumption �4,25,26�, but it should be reasonable.
If the price keeps always unchanged, one feels little chance
of benefit, and the demand of buying stocks drops. As a
result, the stock prices fall. Such a phenomenon is universal
for both the German and Chinese markets. All results above
show that understanding the dynamic behavior nonlocal in
time gains new insights into the financial dynamics. In fact,
various dynamic correlation functions can be introduced for
describing the dynamic properties nonlocal in time, and the
detail of this kind will be presented elsewhere.

Finally, we introduce a retarded volatility model to simu-
late the leverage and antileverage effects. According to Ref.
�4�, the price change dy�t��=y�t�+1�−y�t�� depends not only
on y�t�� but also on the prices in the past times,

dy�t�� = �y�t�� − 	
t=1

�

K�t�dy�t� − t�
��t����t�� . �4�

Here ��t�� is a Gaussian white noise, ��t�� is the volatility
generated, e.g., by a dynamic herding model �10,16,17�, and
K�t� represents the retarded effect of the prices, which should
decay to zero within a certain time. Usually, y�t�� is with a
not too small background, then dy�t�− t� /y�t���dy�t�
− t� /y�t�− t�. Keeping in mind that r�t���dy�t�� /y�t��, Eq.
�4� leads to r�t��= �1−	t=1

� K�t�r�t�− t����t����t��. Following
the procedure in Ref. �4�, one may approximately derive
L�t�=−2K�t� if ��t�� is the order of 1. Taking K�t�
= ±c exp�−t /��, we numerically simulate the retarded vola-
tility model and compute L�t�. A positive K�t� induces a le-
verage effect, while a negative K�t� leads to an antileverage
effect. The results are shown in Fig. 1�b�. In addition, the
solution also reproduces the leverage and antileverage effects
nonlocal in time in Fig. 2�a�. A power-law behavior of NL�t�
is observed. However, the antileverage effect in the negative
time direction cannot be described by the dynamics of Eq.
�4�. It remains a great challenge to understand fully the le-
verage and antileverage effects in financial markets.

In summary, with both the daily and minutely data of the
German DAX and Chinese indices, we compute the return-
volatility correlation functions both local and nonlocal in
time, and find a leverage effect for the German DAX while
an antileverage effect for the Chinese indices. In the negative
time direction, i.e., for the volatility-return correlation func-
tions, an antileverage effect nonlocal in time is detected for
both the German DAX and Chinese indices, although the
duplicate local in time does not exist. A retarded volatility
model may describe the asymmetric properties of the finan-
cial indices in the positive time direction.

This work was supported in part by NNSF �China� under
Grant Nos. 10325520 and 70371069, and DFG �Germany�
under Grant No. TR300/3-4.

FIG. 2. �Color online� �a� −NL�t� computed with both daily and
minutely data. For clarity, the curves of the minutely data have been
multiplied by a factor of 15. All the dashed lines obey a power law
in Eq. �3�. The exponent � extracted from the daily data of the
German DAX is 0.91�5�. For the minutely data of the German
DAX, the daily data and minutely data of the Chinese indices, � is
estimated to be 1.8, 1.5, and 1.5, respectively. �b� NL�−t� plotted in
a log-log scale. The curves of the minutely data have been multi-
plied by a factor of 15. The dashed lines obey a power law in Eq.
�3�. The exponent � extracted from the daily data of the German
DAX is 0.88�5�. The dashed line fitted to the minutely data is with
an exponent �=1.8. For comparison, −NL�t� of the daily and mi-
nutely data of the German DAX are shown with pluses.
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